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DIFFUSIOPHORESIS OF LIQUID DROPS IN VISCOUS MEDIA WITH DUE CONSIDERATION 

OF INTERNAL FLOWS AND THE PHASE TRANSITION ON THEIR SURFACE 

Yu. M. Agvanyan and Yu. I. Yalamov UDC 541.182:532.72 

A theory of diffusiophoresis of a spherical drop in a binary viscous mixture with 
nonuniform concentration is developed. 

In construction of a theory of motion of liquid drops in viscous media with a phase 
transition occurring on their surface internal flows have not been taken into account so 
far [1-9]. In fact, drops whose viscosity is very much greater than the viscosity of the 
external medium surrounding them have been considered. In these conditions the presence of 
hydrodynamic flows inside the drop can be neglected. 

It was shown in [10-12] by the examples of gravitational, thermophoretic, and diffusio- 
phoretic motion of nonvolatile drops in viscous media that the contribution of internal flow~ 
to the velocity becomes very substantial if the viscosity of the internal region of the drop 
is comparable with the viscosity of the medium surrounding the drop. It has also been found 
that with increase in the radius of the nonvolatile drops of water their velocity of thermo- 
phoresis in gases (particularly in air) will depend significantly on the interphase surface 
tension, which varies over the surface of the drops [ii]. 

Throughout the paper the term "nonvolatile drop" means a drop on whose surface there is 
no phase transition of the substance of which it consists. The term "volatile drop" means a 
drop on whose surface there is a phase transition of the substance of which it consists. 

In this paper we consider the diffusiophoresis of a large volatile spherical drop of 
radius R in a binary viscous mixture. By a viscous mixture we mean either a gaseous or liq- 
uid mixture. Far from the drop gradients of the relative concentrations (VCIe) and (VC2e)= 
of the mixture components are maintained in the volume of the medium. If the drop is sur- 
rounded by a binary gas mixture we choose as C1e and C2e the relative numerical concentration= 

of the molecules: C1e = nle/ne, C2e = n2e/ne, n e = nle + n2e, nle and n2e are the numbers of 
molecules of the first and second components of the mixture in unit volume. For the case of 
a liquid binary mixture external to the drop it is convenient to introduce relative mass con- 
centrations C1e and C2e for the components: 

Cte = ni~mt/Pe and C2~ = n2~m2/p~, 

where m~ and m2 are the masses of the molecules of the mixture components, and Pe = n~eml § 
n2em2 is the density of the mixture. 

The origin of the spherical system of coordinates r, 8, ~ can be taken at the center 
of the drop. In this case the drop can be regarded as at rest, and the binary mixture as 
moving relative to the center of the drop at constant velocity U. If we choose (VCIe)~ along 
the polar axis Z = r cos e, then vector U will be directed along this axis. 
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The procedure for solution of this problem is analogous to that described for the solu- 
tion of problems of thermophoresis and diffusiophoresis of nonvolatile drops with internal 
flows taken into account [10-12]. 

The distributions of velocities v (e) and v(i). pressures p(e) and p(i), and tempera- 
tures T(e) and T(i), respectively, for the externai [superscript (e)] and internal[(i)] re- 
gions relative to the drop are sought with the aid of the following system of equations: 

~eV2V(e) = Vp(r (1 )  

divv(r = O, (2 )  

~iV2V(O = Vp(o, (3 )  

div v~") = 0, (4) 

vZT (o = 0, ( 5 )  

v2T(O = 0. (6 )  

In (i) and (3) q e and qi are the viscosities of the medium outside and inside the drop, re- 
spectively. 

For concentrations Cxe outside the drop the equation 

V~le = 0 (7) 

is valid. Equations (1)-(7) are presented in linearized form. Linearization is carried out 
if the relative change in all the quantities that vary with the coordinates [v (e) Cte, v (i) 
Te ' Ti ' p(e), and p(i)] is small at distances on the order of the drop diameter. 'It was 
shown in [2-4] and [10-12] that this condition is equivalent to introduction of a single 
small parameter 

(Rv) << 1. (8)  

At a great distance from the drop (r § ~) the boundary conditions 

vi e) = IOI cos 0, (9)  

v~o ~> = -- IUI sin 0, (i0) 

Cle = Cole -F (vCte)** r cos0,  (ii) 

Te = Toe (12) 
a re  v a l i d .  In ( 1 1 ) ,  (12) and h e n c e f o r t h  the  s u b s c r i p t  0 (Co i ,  Toe) d e n o t e s  v a l u e s  of  the  
quantities at a great distance from the drop. 

The surface of the drop is impermeable to the second component of the binary mixture, 
which can be expressed by the relation 

o 17/1 0Cte ) I 
nozeV~/) + nSeDi2 = 0 (13) 

POe Or r--R 
for the case where the external medium is a binary gas mixture. 

If the external medium consists of a binary mixture of liquids, we have the following 
condition for permeability of the second component: 

~ ) ,  P o ~ -  OCle\l 
nozeVr -r- --mz Lltz --:--/i0r ~it=n= 0. (14) 

In (13) and (14) qo2e is the number of molecules of the second component, and noe is the 
total number of molecules, in a unit volume of the mixture, Poe is the density, and DIa is 
the coefficient of mutual diffusion. 

The first terms on the left sides of (13) and (14) are the convective radial fluxes, and 
the second terms are the converted (i.e., expressed in terms of 3C1e/3r) radial diffusion 
fluxes of the second component of the mixture. 

We assume that the drop retains its spherical shape. The nondeformability condition 
has the form [13] 

_n,.u_ << 
R R ' ( 1 5 )  
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where o is the interphase surface tension on the drop--external medium interface. 

For the tangential components of the velocity outside [v~ e) ] and inside [v~ i) ] the 
drop at r = R the condition [11-12] 

�9 l l e  a T e  I ~ , , ~  ~z 

(V~ e ) -  = K~2e OoeToe E aO it, j R '  R a~O--ir=R (16) 

i s  v a l i d .  C o n d i t i o n  (16) shows t h a t  the d i f f e r e n c e  i n  v e l o c i t i e s  of  the i n t e r n a l  and ex -  
media on the drop surface [v e) --v(i)] ternal I @ r=R is equal to the sum of the thermal and dif- 

fusion slip velocities, which are proportional to the coefficients K~ and K~ ), respective- 
ly. 

Condition (16) has the same general form for gaseous and liquid media outside the drop. 
The difference consists in the specific analytical expression for K~ and K~ ) . Analytical 
expressions for KJ (e) o~d K (e) were obtained with different degrees of accuracy by different 

, . Tse ~'" . ie . 
m e t h o d s  f o r  Dmnary ga s  mmx~ures  xn [ 1 4 - 1 9 ] .  The m o s t  a c c u r a t e  r e s u l t s  w e r e  o b t a i n e d  i n  [ 1 7 -  
19]. The coefficients of thermal and diffusion slip for liquids and, in particular, liquid 
mixtures have not yet been calculated theoretically. This is due to the fact that a theory 
of an inhomogeneous liquid at a boundary with another phase must first be constructed. The 
construction of such a theory, however, involves mathematical difficulties that have not yet 
been overcome. Nothing we have said, however, rules out the experimental measurement of 
<g~ and K (e) for different binary liquid mixtures. 

se 

On the surface of the drop, in view of the phase transition of its substance, for the 
first component of the external mixture we have the condition 

nielr=R = nit8 (Te)],-=n, (17)  

where n~es(Te) is the absolute saturating concentration (in number of molecules) of the first 
component of the mixture at temperature T e. We can then write 

'hes (T~Ir:R = hOleS (T0e)ir=R ,+ 6r:lr=R. (18)  

Equation (18) reflects the relation between the saturating concentration of the first com- 
ponent and the temperature; no~es(Toe) is the saturating concentration of the first compo- 

! 

tent at temperature Toe, and T e is the contribution made to Toe by external temperature gra- 
dient. The constant 6 in (15) is given by 

6 - dlTl~(T) 
dT (19)  

On t h e  d r o p  s u r f a c e  t h e  t e m p e r a t u r e  i s  c o n t i n u o u s :  

Telr= R = Tdr= R. (20)  

The d i f f e r e n c e  i n  h e a t  f l u x e s  o u t s i d e  and  i n s i d e  t h e  d r o p  i s  e q u a l  t o  t h e  h e a t  g o i n g  t o w a r d s  
phase transition of the drop in unit time for unit surface: 

n 2 aCie aT~ _ ~ o e  D = (__ aTe , ~mlm~ ] • - - 8 7 -  - r  • ,=~ (21) Poe i~ Or ~=R ~,, ~ , 

for the case of a gas phase outside the drop and 

aC,e r=n= ( aTe x, aT, ]] (22)  
~P~  _ - - •  8r ]lr=R 

f o r  t h e  c a s e  o f  a l i q u i d  p h a s e  o u t s •  t h e  d r o p .  

I n  (21)  and (22)  a i s  t h e  s p e c i f i c  h e a t  o f  t h e  p h a s e  t r a n s i t i o n ;  •  and z i a r e  t h e  
t h e r m a l  e o n d u e t i v i t i e s  o f  t h e  e x t e r n a l  medium and  d r o p ,  r e s p e c t i v e l y .  

On t h e  d r o p  s u r f a c e  t h e  f l o w  o f  t h e  f i r s t  c o m p o n e n t  o f  t h e  m i x t u r e  i s  c o n t i n u o u s ,  w h i c h  
can be expressed by the relations 

,., ,(e) 2 /71"2 
,~Olevr - -  Di2/ ' /oe  ~3oe 

rZ0teVr(e) m i  2 Poe 

f/z i 

aC~ )i not~v~ ~ , ---- (23) 
Or r=R Ir=R 

acle )I (oi 
: noiiVr �9 (24) 

at. Ir=R r=R 
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Equation (23) is valid for the case of a gas phase external to the drop, and (24) for 
an external liquid phase. The first terms on the left sides of (23) and (24) are equal to 
the convective radial fluxes of the first component of the binary mixture, while the .sec~ 

to the radial diffusion fluxes of the same component. The term no~iv$~)Jr= R terms are equal 
on the right sides of (23) and (24) is equal to the convective radial flux of matter within~' 
the drop at the drop-external medium interface. 

On the drop-external medium interface the normal and tangential components of the total 
stress tensor are continuous (see [13, Chap. 2] or [ii]): 

~,~'~ \ { 0v/~ ~1 
(__p(e) "JC 2~e_~f )r=R__3~ ~__p(i)+ 2~l__~) l r=R ' (25)  

(1 0v~ '~ OrS ~ 
~e r 00 + dr 

D(0 e) ) 1 0 a  OTe [r=R ( 1 0 v ~  i) OV(o ~ V(o ~ 
r ,=R-~ r OTe O0 17 1]~ r O0 + Or r ) r=R" (26) 

In (26) i/r(~o/~Te)(3Te/~O)Ir= R is the tangential component of the force due to tempera- 
ture variation of the surface tension over the indicated interface. 

The solution of the system of differential equations 
(9)-(14) and (16)-(26) can be put in the form [12, 20] 

vr(e)= (A~_i_r ~" "---~B'+ [UI)cos 0, 

v~e) = ( 2r 3A~ B,2r IUI) sin0' 

p(O p(oe) + TI, Be = COS 0, 
r 2 

(1)-(7) with boundary conditions 

(27) 

611i noie ( [5~ _ _+_ _ ~ ) (2• •174 
-~ (2Tie + 3Th) noii . no,.~ no~ (2• • + 2=6m,[5~ ] (2tie j~-31]i)(2he-i-nl-[- 2cc6mt~=_~ -i- 

flOe / \ HOe / 
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+ 3[5 (2he -+- ni)(2• -+- • (vCt~.)~ (36) 
2o~6m,[5~ \ 

no~ (2Tie + 3~) 2• + • --n0e ) 

6 ~ t K $ ) D ~ r n i  [5~" (vC,e)| 
U D  = - -  U = --  6ni neK~)~ czm,[5~ ( vC, e)2~m ,[5~ no, : 

(2,b _}_ 3Th) 9oeTo~ ( 2• • + ) (2,le + 3,h)(2• + • + 2cz6m,[5~ ) 
FlOe lZoe 

2~tn,[5=R Oao 

(28) 

(29) 

v(/) ---- (ct + Dir 2) cos0, (30) 

v~o 0 = - -  (ct § 2Dir9 sin 0, (31) 

p(O = p~o 0 _+_ l0 ~iD~r2 cos 0, (32) 

T, = To, + '~' cos 0 + % - - ,  (33) r 2 r 

T i = Toi -~ ~tar cos 0, (34)  

Cie=Co,,+l(vC,,)~lrcosO+ Laa cosO.- q~2 (35) 
hOe r2 r 

Substitution of the solutions (27)-(35) in the boundary conditions (13)-(14), (16)-(18), and 
(20)-(26) gives a system of equations, with the aid of which we can calculate all the known 

constants: Ae, Be, c i, D i, ~, ~2, ~3, IUI, ~I, and ~ 2. 

Knowing IUI, we can write an expression for the velocity of the drop in the field of 
concentration gradient (VCI) : 



In (36) we have introduced symbols for a gas mixture external to the drop, 

2 mi  2 D mz  = no~Di~ --, ~ = no~ ~z , (37) 
Po~ Po~ 

and for a liquid mixture external to the drop, 

~= P~ , ~=-- P~ (38) 
m~ m t 

Thus, we have Obtained a formula (36) for the velocity of diffusiophoresis of a liquid 
drop in a binary viscous mixture. The formula is valid for description of the motion of 
drops in both liquid and gaseous binary mixtures. 

In the case of gas mixtures formula (36) can be directly compared with experiment, since 
all the quantities contained in it can be calculated theoretically., In the case of motion 
of drops of liquids, however, the coefficients K (e) and K~ ) are unknown, as already men- 
tioned. Tse 

The first two terms in (36) make a contribution to the velocity directed towards reduc- 
tion of the concentration of the first component of the binary mixture, which undergoes a 
phase transition on the drop surface. The other three terms lead to the appearance of a 
velocity component directed towards increase in concentration of the same component of the 
mixture. Thus, the equation of motion of a drop depends significantly on the relative roles 
of two opposing effects. Owing to thermal and diffusion slip the drop moves in the direction 
of decrease in the concentration C1e, and due to reactive evaporation and 3~/3T e it moves in 
the direction of increase in C1e. 

If the viscosity and thermal conductivity of the internal region of the drop ~i and z i 
become very much greater than the viscosity and thermal conductivity qe and z e of the exter- 
nal medium (if the gas contains a highly viscous and highly heat-conducting drop), and no~e/ 
noli + 0 , from (37) we obtain 

2 

UD-- ~ (vCie) __ aoe Dt2 mi-(vCie)~. (39) 
tZO2e nO2e POe 

The last formula coincides with the result of [S, 9]. 
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